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In most applications of dissolution-DNP, the polarization of nuclei with low gyromagnetic ratios such as
13C is enhanced directly by irradiating the ESR transitions of radicals with narrow ESR lines such as Trityl
at low temperatures T = 1.2 K in polarizing fields B0 6 5 T. In a field B0 = 6.7 T at T = 1.2 K, DNP with
TEMPO leads to a rapid build-up of proton polarization P(1H) = 91% with sDNP(1H) = 150 s. CP at low tem-
peratures yields a polarization P(1H ? 13C) in excess of 70% within 20 min. After rapid dissolution to
room temperature, this is 122000 times larger than the Boltzmann polarization at 300 K and 6.7 T.

� 2012 Elsevier B.V. All rights reserved.
For a variety of reasons, dynamic nuclear polarization (DNP)[1],
when it is used to boost the polarization P(S) of nuclei S with low
gyromagnetic ratios cS prior to rapid heating to room temperature
(so-called ‘dissolution DNP’ [2]), is usually performed in fairly low
magnetic fields, most frequently B0 = 3.35 T. Furthermore, DNP is
usually carried out at temperatures in the vicinity of T = 1.2 K. Un-
der such conditions, the electron spin polarization is close to unity
(Pe = 95%). By irradiating the EPR transitions with microwaves, a
significant fraction of this polarization can be transferred to the
polarization PS of nuclear spins S such as 13C, which is defined as
PS ¼
na � nb

na þ nb

Experimental reports on low temperature dissolution DNP at
fields above 3.35 T, i.e., at B0 = 4.6 T using Trityl and at B0 = 5 T
using the widely available free radical 2,2,6,6-tetramethyl-1-pipe-
ridinyloxy (TEMPO) [3,4] show substantial improvements in polar-
ization levels achieved by direct DNP, i.e., P(13C) = 35% at 4.6 T and
P(13C) = 15% at 5 T, albeit at the price of prohibitively long build-up
times: sDNP(13C) > 3000 s with Trityl at 4.6 T and sDNP(13C) > 1000 s
with TEMPO at 5 T. On the other hand, the build-up times are usu-
ally much shorter for protons than for carbon-13 when TEMPO is
used as polarizing agent [5–8]. We have shown recently [9] that
the combination of 1H DNP using TEMPO with cross-polarization
(CP) to transfer the enhanced magnetization from 1H to 13C allows
one to achieve dramatic improvements in both polarization levels
and build-up rates.[9] At 3.35 T, polarization levels as high as
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P(1H) = 40% and P(1H ? 13C) = 25% after CP could be achieved quite
rapidly since sDNP(1H) = 90 s [10]. This approach opens new possi-
bilities by accelerating sample throughput, which should be useful
for many in vivo and in vitro hyperpolarization experiments.

Increasing the magnetic field B0 beyond 5 T cannot significantly
enhance Pe since it is already close to unity at 3.35 T. It is therefore
not obvious that an increase of B0 can yield any improvement in
the nuclear spin polarization PS. However, a closer inspection of
the mechanism known as ‘thermal mixing’ (TM) as described by
spin temperature theory[1] reveals that one should expect an
improvement in DNP efficiency at higher fields. In this work, it is
shown that at B0 = 6.7 T and T = 1.2 K, using frozen glassy solutions
containing TEMPO as polarizing agent, a polarization P(13C) = 36%
can be obtained directly, albeit with a slow build-up sDNP(13C) =
2000 s. With Trityl, it might be possible to achieve higher polariza-
tion levels P(13C) at B0 = 6.7 T, but the build-up times are likely to
be much longer. With TEMPO at B0 = 6.7 T and T = 1.2 K, the proton
polarization builds up to P(1H) = 91% with a much shorter build-up
time sDNP(1H) = 150 s, i.e., the acceleration factor is j = sDNP(13C)/
sDNP(1H) = 13. Cross polarization (CP) therefore allows one to
achieve unprecedented polarization levels P(1H ? 13C) = 71% in a
remarkably short time.

The design of the DNP polarizer used in this letter was adapted
from the 3.35 T apparatus described previously [11,12] by running
a superconducting magnet designed for B0 = 7.05 T (Oxford Instru-
ments) at B0 = 6.7 T, corresponding to an electron frequency
me = 188 GHz. The microwave source (ELVA) initially operating at
94 GHz (tuning range ± 250 MHz, Pmax

lw = 400 mW) was coupled to
a frequency doubler (VDI/D200) to yield 188 GHz (tuning
range ± 500 MHz, Pmax

lw = 120 mW.) Apart from the tuning and
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Figure 1. (a) Calculated ESR spectrum of 50 mM TEMPO at B0 = 6.7 T. (b) Proton
polarization P(1H) calculated as a function of the microwave frequency. (c)
Experimental polarization P(1H) as a function of the microwave frequency at
B0 = 6.7 T and T = 1.2 K in a frozen 3 M solution of 13C-1 enriched sodium acetate in
a deuterated water/ethanol mixture (67:33 v/v) doped with 50 mM TEMPO (d). The
curve is to guide the eye. For the parameters used to calculate the theoretical
curves, see text.

Figure 2. (s) Direct build-up of the polarization P(13C), without using cross-
polarization (CP) from 1H to 13C, using TEMPO at B0 = 6.7 T and T = 1.2 K with
flw = 188.3 GHz and Plw = 120 mW, leading to P(13C)max = 36% and sDNP(13C) =
1980 s. (w) Indirect build-up of the polarization P(1H ? 13C) using adiabatic half
passage cross-polarization (CP) from 1H to 13C with contacts of duration sCP = 1 ms,
repeated at intervals DtCP = 300 s (see text for details), leading to
P(1H ? 13C)max = 71% and sDNP(1H ? 13C) = 490 s for a frozen 3 M solution of 13C-1
enriched sodium acetate in a deuterated water/ethanol mixture (67:33 v/v) doped
with 50 mM TEMPO.

Figure 3. Polarization P(13C) obtained at T = 1.2 K in three different magnetic fields
(B0 = 3.35, 5.0 and 6.7 T) with frozen 3 M solutions of 13C-1 enriched sodium acetate
in a deuterated water/ethanol mixture (67:33 v/v) doped with TEMPO (Ce = 30, 50,
and 50 mM at 3.35, 5.0 and 6.7 T respectively) (s) by direct DNP and (w) by indirect
DNP using cross-polarization [3,9,11]. The curve is to guide the eye.
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matching circuitry for m0(1H) = 285.23 MHz and m0(13C) =
71.73 MHz, all other components of the DNP polarizer were kept
unchanged [11]. While this simple upgrade may appear straight-
forward, our observation that DNP can actually be dramatically
improved at such high fields is far from obvious.

The build-up of P(1H) is rapid if TM is the dominant mechanism,
as occurs with TEMPO. The electron spin resonance (ESR) spectrum
of TEMPO has a broad line-width Dme > m0(1H), because of its rela-
tively large g-anisotropy (Dg > c(1H)/ce). This is not the case for Tri-
tyl that is characterized by a narrow ESR line-width Dme < m0(1H). A
broad ESR line Dme > m0(1H) is a necessary, though not a sufficient,
condition for 1H polarization by TM. According to spin temperature
theory [1], the spectral diffusion among electron spins must be fast
compared to the electron spin–lattice relaxation (tSD� T1e). Fast
spectral diffusion contributes to establishing a unique spin temper-
ature TS in the rotating microwave frame [13–15]. This spin tem-
perature is subsequently transferred by thermal contact to all
nuclear spins in the sample [12]. The condition tSD� T1e can be
Please cite this article in press as: S. Jannin et al., Chem. Phys. Lett. (2012), htt
readily fulfilled by increasing the radical concentration. However,
the resulting dipolar broadening dd of the ESR spectrum should
not mask the inhomogeneous broadening meDg. Since the inhomo-
geneous line-width meDg increases with B0, the radical concentra-
tion should be increased with B0. At 6.7 T and 1.2 K, we
empirically determined the optimal radical concentration to be
Ce = 50 mM, instead of Ce = 30 mM at 3.35 T and 1.2 K.

Figure 1 shows (a) the simulated ESR line of 50 mM TEMPO
at B0 = 6.7 T calculated with EasySpin[16] with the following
parameters: Sys.g = [2.00962.00652.0023]; Sys.Nucs = ‘14N’;
Sys.A = [18.819.4102.4] MHz; Sys.lwpp = 2.7 mT. (b) Correspond-
ing simulated DNP enhanced proton spectrum under partial micro-
wave saturation, as a function of the microwave frequency,
assuming that TM is the dominant mechanism [12], taking the
ESR spectrum of Figure 1a as input, assuming a microwave field
strength B1 = 2 kHz, and a saturation rate rs = 40 Mrad s�1 (see
[17] for definitions). (c) Experimental DNP enhanced proton signals
(d) as a function of the microwave frequency, measured at
B0 = 6.7 T and T = 1.2 K with a microwave power Plw = 120 mW
p://dx.doi.org/10.1016/j.cplett.2012.08.017
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Figure 4. (a) Polarization P(13C) and (b) DNP build-up times sDNP(13C), respectively sDNP(1H ? 13C), obtained (s) by direct DNP and (w) by indirect DNP using cross-
polarization at B0 = 6.7 T as a function of temperature T = 1.2, 2.2 and 4.2 K with a frozen 3 M solution of 13C-1 enriched sodium acetate in a deuterated water/ethanol mixture
(67:33 v/v) doped with 50 mM TEMPO. The curves are to guide the eye.

Table 1
Various polarization levels, enhancements, build-up time constants, and spin–lattice relaxation times (after CP) observed in a field B0 = 6.7 T at three different temperatures
T = 1.2, 2.2 and 4.2 K for a 3 M frozen solution of 13C-1 enriched sodium acetate in a deuterated water/ethanol mixture (67:33 v/v) doped with 50 mM TEMPO.

T/K sDNP(13C)/s P(13C)/% eDNP sDNP(1H)/s DtCP/s sDNP(1H ? 13C)/s P(1H ? 13C)/% eCP-DNP T1(13C)/s

1.2 1980 36 254.5 150 300 488 71 495.0 1281
2.2 1010 22.5 287.5 52 120 192 43.8 559.8 765
4.2 359 5.5 134.2 25 60 70 15.5 378.2 320
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in a frozen 3 M solution of 13C-1 enriched sodium acetate
CH3

13COONa in a deuterated water/ethanol mixture (67:33 v/v)
doped with 50 mM TEMPO.

Proton polarization values as high as P(1H) = 91% can be readily
obtained with flw = 188.3 GHz, corresponding to the negative
extremum in Figure 1b, with a short build-up time sDNP(1H) =
150 s. This polarization level is equivalent to a spin temperature
as low as TS = 4.5 mK. Under the same conditions, P(13C) builds
up much more slowly by direct DNP with sDNP(13C) = 1980 s
towards a level P(13C) = 36%.

Figure 2 demonstrates the use of CP to achieve an unprece-
dented level of P(1H ? 13C) = 71% with a record build-up time of
sDNP(1H ? 13C) = 490 s. This is accomplished by repeating a sin-
gle-contact adiabatic half-passage cross-polarization (CP) scheme
at intervals DtCP = 300 s, inspired by preliminary work of Perez-
Linde and Köckenberger [18]. In our experiments, each CP contact
comprises (a) two frequency-swept pulses applied simultaneously
to both 1H and 13C channels, i.e., two CHIRP pulses of duration
175 ls with constant 40 kHz amplitudes on both channels (which
must be limited to avoid arcing) and carrier frequencies swept in a
linear fashion (from – 100 kHz to 1H or 13C resonance) that convert
the longitudinal magnetization Iz + Sz into transverse magnetiza-
tion Ix + Sx, (b) a rectangular pulse with a constant 40 kHz ampli-
tude of duration sCP = 1 ms applied to the 1H channel,
simultaneously with a ramped pulse applied to the 13C channel
with an amplitude that is increasing linearly between 36 and
44 kHz,[19] (c) and finally two CHIRP pulses with frequencies that
are swept in the opposite sense as in step (a) to bring the magne-
tization back to Iz + Sz, in the manner of flip-back experiments [20].
The overall efficiency of this adiabatic half-passage CP scheme de-
pends on many factors, such as the efficiency of each CP step, the
partial depletion of the polarization P(1H) in each CP step, the
time constant sDNP(1H) of the 1H polarization build-up due to
DNP, the T1 relaxation of P(1H) and P(13C), etc. The optimal
repetition time DtCP and contact time sCP are best determined
empirically. For example, a shorter repetition time DtCP = 150 s
leads to a faster build-up time constant sDNP(1H ? 13C) = 340 s,
Please cite this article in press as: S. Jannin et al., Chem. Phys. Lett. (2012), htt
but at a price of a lower final polarization level P(1H ? 13C) =
67%. Longer contact times sCP can slightly improve the efficiency
of each CP contact, but tend to accelerate the depletion of P(1H)
through T1q relaxation of the spin-locked proton magnetization.
Such losses are more pronounced when the radiofrequency field
strength B1 is not significantly larger than the line-width of the
1H proton spectrum at 1.2 K, which is determined by dipolar
broadening.

We advocate the use of TEMPO to rapidly boost the proton
polarization P(1H), followed by 1H ? 13C cross-polarization using
adiabatic half-passage methods. Unless one wishes to avoid
cross-polarization and prefers direct 13C DNP, TEMPO is actually
better than Trityl. Our strategy allows one to obtain higher polari-
zation levels at high fields. Figure 3 shows the improvement of 13C
DNP at T = 1.2 K (with and without CP) at B0 = 6.7 T compared to
B0 = 3.35 and 5 T. Figure 4 shows (a) the maximum 13C polarization
obtained and (b) the build-up time constants measured at
B0 = 6.7 T and different temperatures T = 1.2, 2.2, and 4.2 K, with
and without CP. Table 1 collects the polarization levels and
build-up times that have been observed and shows relaxation
times at B0 = 6.7 T and T = 1.2, 2.2, and 4.2 K. In our previous study
at B0 = 3.35 T [10], we presented the temperature dependence of
direct 13C DNP as a function of microwave irradiation power in
the same temperature range 1.2 < T < 4.2 K. It turned out that, with
our microwave system [11], a power Plw > 200 mW was required
to achieve efficient polarization at T = 4.2 K. In the present letter,
we used a microwave source with a fixed power Plw = 120 mW
at flw = 188 GHz. Improvements in microwave transmission and
the use of more powerful microwave sources should be greatly
beneficial for DNP at T = 4.2 K.

In a high field B0 = 6.7 T and at low temperatures 1.2 6
T 6 4.2 K, in concentrated frozen solutions of 50 mM TEMPO with
broad EPR lines, proton DNP occurs mostly through thermal mixing
(TM). The enhancements build up much faster for 1H with TEMPO
than for 13C with Trityl. Adiabatic half-passage cross-polarization
provides polarizations P(1H ? 13C) = 71% that are larger than
can be achieved with TEMPO by direct polarization P(13C) = 36% ,
p://dx.doi.org/10.1016/j.cplett.2012.08.017
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and substantial gains in build-up times with ratios j = sDNP

(13C)/sDNP(1H ? 13C) > 4. Since the lifetime of CP-enhanced 13C so-
lid state polarization is sufficiently long (1281 P T1(13C) P 320 s
for 1.2 6 T 6 4.2 K), dissolution experiments should be straightfor-
ward with such highly polarized samples. After acceptance of the
manuscript, dissolution experiments were carried out in a new
insert, of different geometry, comprising a saddle coil. After disso-
lution (0.7 s), transfer to a 7.05 T NMR magnet (5 s), injection (3 s),
and settling of the sample (1 s), liquid state polarization levels of
39% and 21.5% where achieved with and without CP. This demon-
strates that CP-DNP enhanced polarization can be preserved during
dissolution and transport.
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